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ABSTRACT

The problems that arise in multitudinous fields often involve solving complex nonlinear 
ordinary differential equations (ODE), and it remains challenging since the actual 
solutions to these problems are hard to obtain. In this regard, the solution strategy with 
the formulation of Fourier series expansion, calculus of variation and metaheuristic 
algorithm, was introduced to determine the approximate solution of the nonlinear ODE. 
The nonlinear ODE was formulated as an optimization problem, specifically, the moth-
flame optimization (MFO) algorithm and flower pollination algorithm (FPA) were utilized 
to find the coefficients of the Fourier series. This paper aimed to determine the feasibility 
of the proposed method to solve the ODEs with different characteristics and compare the 
obtained results with other optimization algorithms. Moreover, the suitable number of terms 
(NT) of Fourier series were determined for different test problems for MFO and FPA. The 
quantitative analysis in terms of the generational distance (GD) metric demonstrated that 
the approximate solutions were reasonably accurate, with the low GD within the range 

of 1E-03 to 1E-05 for all test problems. 
The comparative analysis showed that 
the approximate performances of MFO 
and FPA were superior to or comparable 
with the genetic algorithm, particle swarm 
optimization and water cycle algorithm. 

Keywords: Flower pollination algorithm, Fourier 

series, metaheuristic algorithm, moth-flame 
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INTRODUCTION

Ordinary differential equations (ODE) have found a widespread application in modelling 
various dynamic systems, for instance, the membrane distillation process (Perfilov et al., 
2018) and Human Immunodeficiency Virus model (Tian et al., 2019), to name a few. A 
n-th order nonlinear ODE can be expressed as Equation 1:

( )( , , , , ...., ) 0nF x y y y y′ ′′ =        (1)

where y is a function of a single independent variable  x  and  ( )ny  is the n-th order 
derivative with respect to  x  .  

Solving the nonlinear ODE is a challenging task, especially using analytical approaches, 
in which the solutions of the complex nonlinear ODE may be too complicated to obtain. 
Therefore, numerical methods, such as Euler and Runge-Kutta, are applied to determine 
the approximate solutions of the nonlinear ODE. Numerical methods, however, have their 
operational limitations. For example, Euler’s method is numerically unstable, especially for 
stiff equations (Lambert, 1986). A finer discretization is required for smaller approximation 
error, and unavoidably, leads to higher computation load (Hussain et al., 2016). Moreover, 
most of the numerical methods have large cumulative errors due to the rounding-off error, 
which increases quickly with finer discretization (Butcher, 2016).

In addition to numerical methods, variant of analytical methods, exemplarily, 
variational iteration method (VIM) (He, 1999), differential transformation method (DTM) 
(Hussin et al., 2016), homotopy perturbation method (HPM) (He, 2003), and Adomian 
decomposition method (ADM) (Adomian, 1988), have been utilized to determine the 
approximate solutions of the ODE. Each of these methods has its limitations, albeit it gains 
prominence in solving the modeling problems in various fields (Das & Kundu, 2019; El-
Sayed & El-Mongy, 2019; Turkyilmazoglu, 2018).

VIM – a modified Lagrange multiplier method based on the variational theory, was 
initially introduced by He to solve the wave equation (He, 1999). This method is of high 
calculation complexity due to the repetitive calculation of unnecessary terms (Abassy 
et al., 2007) and subjected to inherent inaccuracy in solving the Lagrange multiplier 
(Mohammadi & Hosseini, 2011). DTM, though based on the Taylor series, is distinct 
in the sense that it does not require the explicit calculation of high-order derivatives as 
in the Taylor series, which may not always formidable (Chen & Liu, 1998). The DTM, 
instead, iteratively calculates the derivatives using the differential transformation, but some 
drawbacks arise, such as the inefficiency in handling the oscillatory systems (Ebaid, 2011) 
and differential equation with complex nonlinearities (Ebaid, 2013). HPM is an improved 
classic perturbation method based on the idea of homotopy in topology (He, 2003). The 
HPM is limited in the way that the initial parameter has to be properly assigned to achieve a 
good approximation (Babolian et al., 2009). The salient feature of the ADM lies in its ability 
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to solve nonlinear differential equations without system linearization due to the utilization 
of the Adomian polynomials (Adomian, 1988). This method is somehow computationally 
complicated due to the calculation of the Adomian polynomials (Mohammadi & Hosseini, 
2011), and proned to divergence when solving ODEs of Emden–Fowler type (Biazar & 
Hosseini, 2017).

In heat exchanger problems, finned surfaces are often used to increase the rate of heat 
transfer. In one-dimensional fin analysis, the energy transfer process can be modelled as an 
ODE if there is no heat variation in the fin cross-section. Otherwise, a partial differential 
equation will be formed (Torabi et al., 2013). The study of thermal conductivity of fins has 
been conducted by many researchers. Solving the nonlinear fin problems using numerical 
approach was studied by Bouaziz et al. (2001). In the analysis of thermal conductivity 
of convective radial and straight fins, VIM was used and compared with finite element 
analysis (Coşkun & Atay, 2007; Coşkun & Atay, 2008). Straight fins with different heat 
transfer coefficients problems were approximately solved using the VIM (Fouladi et al., 
2010).  To assess the temperature distribution of fins, Domairry and Fazeli (2009) applied 
the homotopy analysis method (HAM) to solve the differential equations formed by the 
nonlinear straight fins. Besides, HAM was used to find the approximate solutions for fin 
efficiency and temperature distribution in the study conducted by Khani et al. (2009). Other 
than rectangular fins, concave parabolic and trapezoidal fins were studied for space and 
airborne applications (Torabi et al., 2013).

The limitations of numerical methods and analytical methods prompt the investigation 
on the suitability to apply the metaheuristic optimization technique to solve the nonlinear 
ODE. Literature review reveals the credibility of using genetic algorithm (GA) (Mateescu, 
2006), particle swarm optimization (PSO) (Babaei, 2013; Nemati et al., 2015), water cycle 
algorithm (WCA) (Sadollah et al., 2015a), harmony search algorithm (Sadollah et al., 2017), 
imperialist competitive algorithm (Almasi et al., 2016) and to the more recent, orthogonal 
colliding bodies optimization (OCBO) (Panda & Pani, 2017) in this regard. 

Solving the ODE using the metaheuristic approach, generally, requires the formulation 
of the ODE as an optimization problem. A base approximate function is used as the 
approximate solution of the ODE. Subsequently, a population of self-organized agents 
collaboratively works to find the approximate solution of the ODE based on some rules. 
Various functions can be applied as the base function of the approximate solution, such as 
Runge-Kutta method (Mateescu, 2006), method of bilaterally bounded (Lee, 2006), finite 
element method (Mastorakis, 2006), constrained integration approach (Rudd & Ferrari, 
2015), collocation method (Beidokhti & Malek, 2009) and Fourier series (Babaei, 2013). 
In this study, the Fourier series is chosen as it can decompose any periodic function into 
the sum of sine and cosine functions. Hence, it can approximate any form of ODE using 
the same procedure. Moreover, in comparison with the n-th order polynomial base function 
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which can only be differentiated up to n-th times, the Fourier series can be infinitely 
differentiated since it only involves the sine and cosine functions. 

The Fourier series is made up of the sum of sine and cosine functions along with the 
unknown coefficients. In this study, the unknown coefficients of the Fourier series are 
optimized using the moth-flame optimization (MFO) algorithm and flower pollination 
algorithm (FPA), in which minimizing the weight error function of the ODE is formed as 
the objective function of the metaheuristic algorithms. The obtained approximate solutions 
in solving the well-known ODEs and the longitudinal heat transfer fins problem using the 
MFO and FPA are compared with the results from other optimizers, namely, PSO, WCA, 
GA and OCBO, in terms of the generational distance (GD) metric and mean squared error 
(MSE).  

The paper is organized as follows. A brief introduction of the metaheuristic algorithms 
used in this study – MFO and FPA, is presented in metaheuristic algorithma section. 
Methods section 3 describes the solution strategy of formulating the approximate solution 
of ODE using the Fourier series. In results and discussion section, the experimental 
simulations on solving the well-known ODEs and the longitudinal heat transfer fins problem 
are presented. The relationship of using the different number of terms in Fourier series to 
the approximation accuracy is also analyzed. Lastly, some conclusions are drawn.

METAHEURISTIC ALGORITHM

Flower Pollination Algorithm

The flower pollination process inspires the development of FPA (Yang, 2012). There exist 
two types of pollination process: self-pollination, which does not require a pollinator to 
transfer the pollen; and cross-pollination, which needs the pollinator such as bees and birds 
to travel for a long-distance while obeying the Lévy flight behaviour (Dash et al., 2016). 
To simplify the search process in the FPA, the following four rules are assumed: 

(i) The cross-pollination corresponds to the global search using Lévy flight, which is 
modelled as Equation 2:

( )( )1
*

t t t
i i ix x L x gγ λ+ = + −        (2)

where t
ix  is pollen i at iteration  t  , *g  is the best solution at current iteration, γ  is a 

scaling factor to control the step size and  L(λ)  is a parameter corresponding to the strength 
of pollination. The Lévy distribution is described as Equation 3:

( ) ( ) ( )1

sin / 2 1 , 0oL s s
s λ

λ λ πλ
π +

Γ
>� �        (3)

where ( )λΓ  is a standard gamma function.
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(ii) The self-pollination acts as the local search, which may involve the same flower or 
different flowers of the same plant. This exploitation process is expressed as Equation 4:

( )1t t t t
i i j kx x x xε+ = + −         (4)

where t
jx  and  ε  are pollens from different flowers and  ε   is a random number from 

uniform distribution [0,1].

(iii) The degree of similarity between two flowers is proportional to the reproduction ratio, 
which is considered as the flower constancy. 

(iv) The switching probability (0,1)p∈  is used to control the probability of local and 
global search. 

The pseudocode of FPA is summarized in Figure 1.

Figure 1. The pseudocode of FPA



Ee Soong Low and Pauline Ong

1226 Pertanika J. Sci. & Technol. 28 (4): 1221 - 1265 (2020)

Moth Flame Optimization
The moth performs a spiral path around a light source in the night. Inspired by the transverse 
orientation of such navigation method, the MFO was proposed (Mirjalili, 2015). 

In the MFO, the moths are the search agents (candidates of the solutions), the positions 
of moths represent the variables of the underlying problem, while the flame is the best 
position found by the moth. Through constantly changing the position vector, the moths 
can fly in multiple dimensional spaces. After the best position is identified, it acts as a flame 
and moth will start searching around the flame to search for a better solution. 

The MFO algorithm consists of three main functions: I, P and T. The function I is 
used to generate a random position within the search space. The function P moves the 
moths in a spiral pattern, while the function T terminates the operation when the stopping 
conditions are achieved.

The logarithmic spiral within the function P is modelled as Equation 5:

( ), cos(2 )bt
i j i jS M F D e t Fπ= ⋅ ⋅ +       (5)

where iD  is the distance between the i-th moth and the j -th flame, b is a constant used 
to define the shape of the logarithmic spiral and t is a random number within the range 
[-1,1]. The spiral or the motion path of the moth should start from the initial position of a 
moth and end at the position of a flame. The distance between both flame and moth can be 
determined by manipulating the parameter t in Equation 5, where t varies from -1 (closest) 
to 1 (farthest).

For each iteration, the flame list is sorted from the best to the worst solution. The moth 
is confined to update its position by referring to only one of the flames. This is to avoid the 
solution from getting trapped in the local optima. Besides, to preserve better convergence 
towards the end of the search process, the number of flames decreases as the number of 
iteration increases, according to Equation 6: 

1_ * NFlame no round N I
T
− = − 

 
     (6)

Here, I is the current iteration number, N  is the maximum number of flames and T  
is the maximum number of iterations. The flow chart of MFO algorithm is illustrated in 
Figure 2.

METHODS

Solving the Ordinary Differential Equation using Fourier Series

Consider an ODE of order n as in Equation 1 with initial conditions (Equation 7):
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Let the approximate solution of the ODE represented by the Fourier series and centered 
at 0x  to be expressed in the general form of in Equation 9:

 

1

( ) ( )( ) ( ) [ cos( ) sin( )]
NT

o o
app o m m

m

m x x m x xy x Y x a a b
L L

π π
=

− −
≈ = + +∑   (9)

where oa , ma  and mb  are the Fourier coefficients, and NT is number of terms. L represents 
the length of interval span 0x  to nx . 

Figure 2. The pseudocode of MFO
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The derivatives of Equation 9 are thus given by Equation 10:

1

2 2

1

( ) '( )

( ) ( )sin cos

( ) ''( )

( ) ( )cos sin

app

NT
o o

m m
m

app

NT
o o

m m
m

y x Y x

m x x m x xm ma b
L L L L

y x Y x

m x x m x xm ma b
L L L L

π ππ π

π ππ π

=

=

′ ≈

 − −    = − +        
′′ ≈

 − −      = − −       
        

∑

∑

                          (10)

The approximate solution (Equation 9) and its derivatives (Equation 10) are then 
substituted into Equation 1, creating an error function of ( )E x  as Equation 11:

( )( , , , , ...., )( ) ' '' n
app app app appF x Y Y Y YE x =                     (11)

Subsequently, the weighted error function (WEF) given as Equation 12:
 | ( ) | | ( ) |

D

WEF W x E x dx= ×∫                      (12)

is formulated, where ( )W x  is named as the weight function. The WEF is then utilized as 
the objective function of the metaheuristic algorithm, in which the metaheuristic algorithm 
attempts to find the optimal combination of Fourier coefficients such that the error is 
minimized. In this study, the evaluation of integration in Equation 12 is solved using the 
Trapezoidal integration method. The weight function is assumed to be 1 for simplicity. 
Intuitively, the smaller the value of WEF, the better the approximation accuracy is.

The approximate solution should satisfy the ODE on one hand, and the initial or 
boundary conditions on another hand. Since solving the ODE using the metaheuristic 
algorithm is formulated as an optimization problem, the initial or boundary conditions are 
formed as the constraints of the optimization problem. For homogeneous conditions, the 
constraints for initial conditions are expressed as Equation 13:

0 1 0 0

0 2 0 0

( ) ( )
0 1 0 0

( ) 0 ( ) | ( ) |
'( ) 0 ( ) | '( ) |

( ) 0 ( ) | ( ) |

app

app

n n
n app

y x g x Y x
y x g x Y x

y x g x Y x+

= ⇒ =

= ⇒ =

= ⇒ =


      (13)

or the constraints for boundary conditions are expressed as Equation 14:
0 1 0 0 1

0 2 0 0 2

( ) ( ) ( ) ( )
0 1 0 0 1

( ) 0 ( ) | ( ) |, ( ) 0 ( ) | ( ) |
'( ) 0 ( ) | '( ) |, '( ) 0 ( ) | '( ) |

( ) 0 ( ) | ( ) |, ( ) 0 ( ) | ( ) |

app n n app n

app n n app n

n n n n
n app n n n app n

y x g x Y x y x g x Y x
y x g x Y x y x g x Y x

y x g x Y x y x g x Y x+ +

= ⇒ = = ⇒ =

= ⇒ = = ⇒ =

= ⇒ = = ⇒ =


      (14)
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For nonhomogeneous conditions, the constraints for initial conditions are written as 
Equation 15:

0 0 1 0 0 0

0 0 2 0 0 0

( ) ( ) ( ) ( )
0 0 1 0 0 0

( ) ( ) | ( ) |
'( ) ' ( ) | '( ) ' |

( ) ( ) | ( ) |

app

app

n n n n
n app

y x y g x Y x y
y x y g x Y x y

y x y g x Y x y+

= ⇒ = −

= ⇒ = −

= ⇒ = −



    (15)

or the constraints for boundary conditions are written as Equation 16:

0 0 1 0 0 0

1

0 0 2 0 0 0

2

( ) ( ) ( ) ( )
0 0 1 0 0 0

( ) ( )
1

( ) ( ) | ( ) |,
( ) ( ) | ( ) |
'( ) ' ( ) | '( ) ' |,
'( ) ' ( ) | '( ) ' |

( ) ( ) | ( ) |,

( ) ( ) |

app

n n n app n n

app

n n n app n n

n n n n
n app

n n
n n n n app

y x y g x Y x y
y x y g x Y x y
y x y g x Y x y
y x y g x Y x y

y x y g x Y x y

y x y g x Y
+

+

= ⇒ = −

= ⇒ = −

= ⇒ = −

= ⇒ = −

= ⇒ = −

= ⇒ =



( ) ( )( ) |n n
n nx y−

    (16)

The penalty approach is employed for constraint handling in this study. The penalty 
function value (PFV) of the violated solution is multiplied with a penalty coefficient, 
λ , and added to the WEF as a penalty function. The fitness function value (FFV) of the 
optimization problem is thus given as Equation 17 and 18:

FFV WEF PFV= +         (17)

2

1

nIC nBC

m
m

PFV gλ
+

=

= ∑         (18)

where nIC and nBC are number of initial conditions (IC) and boundary conditions (BC), 
respectively. The penalty coefficient, λ , is assigned as 10 for all considered ODEs in this 
study.

Problem Solution Strategy

The study aims to solve the nonlinear ODE using Fourier series approximation approach, 
in which the metaheuristic algorithm is used to optimize the Fourier coefficients such that 
the FFV is minimized. Hence, solving the ODE can be formulated as Equation 19:

Minimize FFV WRF PFV= +       (19)
subjected to the homogeneous and/or nonhomogeneous initial and/or boundary constraints 
as in Equation 20 and 21:
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0
0

0, 1,2,...,
( )

, 1, 2,...,
IVP
i

i nIC
g x

y i nIC
=

=  =
        (20)

0, 1,2,...,
( )

, 1, 2,...,
BVP
i n

n

i nBC
g x

y i nBC
=

=  =
       (21)

This proposed solution strategy is implemented as follows:

Step 1: Rewrite the ODE in an implicit form, as in Equation 1.
Step 2: Rewrite the initial and/or boundary condition in the form of Equation 13 and 15.
Step 3: Select an appropriate value of NT for Fourier series, as in Equation 9. 
Step 4: Assign a variable to each Fourier coefficients. 
Step 5: Apply the metaheuristic algorithm as the optimizer to determine the optimal 

combination of Fourier coefficients in Equation 9 such that the FFV in Equation 
17 is minimized. 

Step 6: Calculate the MSE and GD metric to assess the fitness of the approximate solution 
in comparison with the exact solution. The GD metric is given as Equation 22 
(Sadollah et al., 2015c):

2
2

1

n

i
i

d
GD

n
=

 
 
 =
∑

                                                       (22)

where n is the number of points and d is the Euclidean distance between point i in 
the approximate solution and the nearest point in the exact solution. In this study, 
n is chosen as 200 for all case studies.

The flowchart of the proposed strategy in solving the nonlinear ODE using the Fourier 
series and metaheuristic algorithm is summarized in Figure 3.

RESULTS AND DISCUSSION

Numerical Simulation 

In this section, the well-known ODEs with different characteristics were used to evaluate 
the applicability of the approximate solutions obtained by the FPA and MFO algorithm. 
Specifically, test problems 1 to 3 are the well-known ODEs in science and engineering, test 
problem 4 is an ODE with Neumann boundary condition, while two mechanical vibration 
problems (mass-spring system) without (test problem 5) and with damping (test problem 
6) were used to evaluate the effectiveness of the proposed approach as well. Also, the ODE 
of the longitudinal fins was studied in test problem 7. The illustrative comparison between 
the obtained solution and the actual solution was presented in addition to the obtained GD 
metric and MSE. Additionally, the relationship of using different NTs to the approximation 
accuracy was explored. 
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All simulations were repeated for 30 runs. For each run, the simulation was continued 
until the maximum number of iteration was reached. Next, the best results of all algorithms 
among 30 runs were reported. Except for test problem 2, the lower and upper bounds of 
the unknown Fourier coefficients were set between -1 and 1, while the search space of the 
unknown Fourier coefficients in test problem 2 was restricted to -2 and 2. 

Figure 3. The flowchart of the proposed solution strategy
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Performance Comparison between Different Optimization Algorithms

In this study, the FPA, MFO and GA were used to optimize the coefficients of the Fourier 
series, with the WEF formulated as the cost function of the optimization algorithm. Since 
finding the approximate solutions of the aforementioned test problems using PSO, WCA and 
OCBO has been conducted in (Babaei, 2013; Panda & Pani, 2018; Sadollah et al., 2015b; 
Sadollah et al., 2015d) and hence, the results were included for comparative purpose. The 
NT of Fourier series in Equation 9 was assigned in accordance with the reported studies. 
Table 1 summarizes the NT, population size (n) and the maximum number of iteration used 
in all optimization algorithms. The value was left as NA if the corresponding information 
was not available (NA) in the respective study. Table 2 lists the parameters setting used in 
all metaheuristic algorithms. It is pertinent to note that the parameters of OCBO are not 
provided in this table as they are not stated in the respective study (Panda & Pani, 2018). 

Table 1
Initial parameter of all optimization algorithms for comparative analysis

Test 
Problem NT

WCA PSO OCBO FPA MFO GA

n Max 
Iter n Max 

Iter n Max 
Iter n Max 

Iter n Max 
Iter n Max 

Iter

1 6 50 500 200 1000 50 500 50 700 300 1000 50 700

2 3 200 200 200 200 200 200 200 500 500 500 200 500

3 3 50 500 300 1000 50 500 50 800 50 500 50 800

4 6 200 100 NA NA NA NA 200 500 200 300 200 500

5 6 NA NA 200 200 NA NA 200 500 200 400 200 500

6 8 NA NA 200 200 NA NA 200 1000 200 600 200 1000

7 3 NA NA 300 1000 NA NA 50 1000 50 1000 50 1000

Table 2
The parameter setting used in all optimization algorithms

Algorithm Parameter
WCA Number of sea and river, Nsr = 8

PSO Inertia weight, ω  = 0.9

Cognition component, 1c  = 0.5

Social component, 2c  = 1.5

FPA Switching probability, p = 0.5
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The performance indicator of GD metric, which has been used in several studies to 
evaluate the optimization performance of each algorithm quantitatively, was utilized in this 
study (Panda & Pani, 2018; Sadollah et al., 2015b; Sadollah et al., 2015c). The GD measures 
the total Euclidean distance between the approximate solution and the exact solution. The 
approximate and the exact solutions were divided into 200 points and the Euclidean distance 
between all the points of the approximate solution and the exact solution was calculated. 
The lower the GD, the closer the approximate solution to the exact solution. Besides GD 
metric, the MSE was also used to evaluate the performance of all optimization algorithms. 

Test Problem 1: Integro-Differential Equation. The integro-differential equation is given 
by Equation 23 (Sadollah et al., 2015c):

( )
0

1 0
2 5

0 0

x x
y y y t dt

x
≥′ + + =  <

∫        (23)

with initial condition ( )0 0y = . The solution interval of x  is chosen from 0 toπ . The 
exact solution of this Initial Value Problem (IVP) is given by Equation 24:

( ) ( )1 sin 2
2

xy x e x−=         (24)

The NT of the Fourier series was fixed as 6. Hence, the WCA, PSO, OCBO, GA, MFO 
and FPA optimization approaches have to determine the best combination of 0a , 1a , 1b ,  

2a ,  2b ,  3a ,  4a ,  4a ,  4b ,  5a ,  5b ,  6a  and 6b  of Equation 25, such that the residual 
error is minimized.

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2

3 3 4 4

5 5 6 6

cos sin cos 2 sin 2

cos 3 sin 3 cos 4 sin 4

cos 5 sin 5 cos 6 sin 6

app oY x a a x b x a x b x

a x b x a x b x

a x b x a x b x

= + + + +

+ + + +

+ + + +

    (25)

Table 2 (Continued)

Algorithm Parameter

FPA λ  = 1.5
MFO b = 1
GA Crossover percentage, pc = 0.7

Mutation percentage, pm = 0.3
Mutation rate, mu = 0.1
Random selection

Euler Number of steps, N = 200
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Table 3 summarizes the best approximate solutions obtained by the WCA, PSO, OCBO, 
GA, MFO and FPA, while Figure 4 presents the comparison between the actual solution 
and the obtained best approximate solution of each algorithm. As shown in Figure 4, all the 
approximate solutions were close to the exact solutions. However, by visual inspection, the 
approximate solutions of MFO, FPA and GA deviate from the actual curve from 2.5x =  
onward. Table 4 summarizes the values of the GD metric for all the considered algorithms. 
It can be observed that Euler’s method can approximate the solution more accurately than 
the others, indicated by the lowest GD, while the GA gave the lowest accuracy. The same 
finding was reported in Table 5, where the performance evaluation in terms of MSE was 
made.  

Table 3
Test Problem 1 - The best approximate solution obtained by various algorithms

Fourier 
Coefficient

Algorithm

WCA PSO OCBO MFO FPA GA

a0 1.9996E-02 3.74E-02 1.9998E-02 5.3744E-01 -1.8435E-
01

1.0338E-01

a1 1.1002E-02 4.67E-03 1.1000E-02 1.2014E-01 -3.6568E-
01

2.8827E-01

b1 3.8363E-02 5.31E-03 3.8360E-02 -1 3.5412E-01 -1.7517E-
01

a2 -7.9942E-
04

-3.87E-02 -7.9942E-
04

-1 1.0558E-01 -3.1155E-
01

b2 1.1888E-01 1.36E-01 1.1888E-01 -2.2236E-
02

6.6087E-01 -2.5309E-
01

a3 -3.6247E-
02

-1.49E-02 -3.6247E-
02

-1.2050E-
01

4.2466E-01 -2.9862E-
01

b3 4.7980E-02 8.24E-02 4.7975E-02 8.7854E-01 1.1973E-01 3.8416E-01

a4 -4.2281E-
02

-1.11E-02 -4.2281E-
02

4.9884E-01 7.9053E-02 2.2051E-01

b4 6.5364E-02 4.14E-02 6.5365E-02 8.3412E-02 -1.9287E-
01

1.5877E-01

a5 2.7610E-02 1.21E-02 2.7610E-02 1.5567E-02 -6.0481E-
02

2.6291E-02

b5 4.9891E-02 2.81E-02 4.9890E-02 -1.9518E-
01

-3.0025E-
02

-8.6205E-
02

a6 2.0754E-02 1.06E-02 2.0755E-02 -4.1044E-
02

-4.5552E-
03

-1.7893E-
02

b6 -4.1469E-
03

1.01E-03 -4.1470E-
03

4.6750E-03 5.7165E-03 7.5348E-03
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Figure 4. Test Problem 1 – Comparison of the best approximate solutions with the exact solution for WCA, 
PSO, OCBO, MFO, FPA, GA and Euler

Table 4
The obtained best GD metric of all algorithms for all test problems

Test 
Problem

Best GD 
Best Worst 

WCA PSO MFO FPA OCBO GA Euler

1 1.63E-
04

3.29E-
04

3.66E-
04

2.58E-
04

1.63E-
04

4.76E-
04

1.11E-
04

Euler GA

2 5.17E-
03

5.15E-
03

3.77E-
04

1.06E-
03

5.15E-
04

1.41E-
03

8.84E-
04

MFO WCA

3 1.53E-
05

2.16E-
05

1.47E-
05

1.08E-
05

6.74E-
06

2.40E-
04

4.58E-
03

OCBO Euler

4 1.09E-
03

- 5.15E-
04

8.18E-
04

- 2.70E-
04

4.45E-
03

GA Euler

5 - 1.77E-
03

5.48E-
04

1.10E-
03

- 5.70E-
04

1.37E-
02

MFO Euler

6 - 1.16E-
04

4.74E-
04

4.77E-
04

- 3.02E-
04

5.27E-
04

PSO Euler

7 - 3.95e−
04

2.81E-
04

4.27E-
04

- 2.66E-
04

4.40E-
05

Euler FPA

Note: There were some blank spaces due to some best approximate solutions were not provided in the 
respective references
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Table 5
The obtained best MSE of all algorithms for all test problems

Test 
Problem

Best MSE
Best Worst 

WCA PSO MFO FPA OCBO GA Euler

1 5.32E-
06

2.17E-
05

2.67E-
05

1.33E-
05

5.32E-
06

4.53E-
05

2.44E-
06

Euler GA

2 2.04E-
04

6.94E-
03

1.22E-
04

4.12E-
03

2.00E-
04

1.47E-
04

4.49E-
05

Euler PSO

3 4.68E-
08

9.35E-
08

4.32E-
08

2.34E-
08

9.08E-
09

1.15E-
05

5.82E-
03

OCBO Euler

4 2.36E-
04

- 5.30E-
05

1.34E-
04

- 1.46E-
05

3.97E-
03

GA Euler

5 - 2.22E-
03

6.39E-
05

1.12E-
03

- 7.40E-
05

5.37E-
02

MFO Euler

6 - 2.67E-
06

6.10E-
05

1.21E-
04

- 1.82E-
05

5.82E-
05

PSO FPA

7 - 5.22E-
06

1.58E-
05

3.64E-
05

- 1.42E-
05

3.88E-
07

Euler FPA

Note: There were some blank spaces due to some best approximate solutions were not provided in the respective 

references

Test Problem 2: Simple Electrical Circuit. In this problem, a system of ODEs for a simple 
circuit was considered (Sadollah et al., 2015c). The ODEs are expressed as Equation 26:

2

dI I V
dt
dV I V
dt

= − −

= −
        

(26)

with initial conditions ( )0 2I =  and ( )0 2V =
Here, I and V represent the current and voltage, respectively. The solution interval 

of time, t  varies from 0 to 1.5. The exact solutions of current and voltage are given by 
Equation 27:

( ) 2 cos( 2 ) 2 sin( 2 )

( ) 2 2 sin( 2 ) 2 cos( 2 )

t t

t t

I t e t e t

V t e t e t

− −

− −

= −

= +
     (27)

The test problem is unique in which two ODEs are solved simultaneously. 
The NT of Fourier series was assigned to 3. Since the test problem is a system of two 

ODEs, hence, a total of 14 variables needs to be optimized, given as Equation 28 and 29:
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( ) 0 1 1 2 2

3 3

2 2cos sin cos sin
1.5 1.5 1.5 1.5

3 3cos sin
1.5 1.5

app
t t t tI t a a b a b

t ta b

π π π π

π π

       = + + + +       
       

   + +   
   

 (28)

( ) 1 1 2 2

3 3

2 2cos sin cos sin
1.5 1.5 1.5 1.5

3 3cos sin
1.5 1.5

app o
t t t tV t c c d c d

t tc d

π π π π

π π

       = + + + +       
       

   + +   
     

(29)

Table 6 and 7 summarize the best approximate solutions for the current function, appI
and the voltage function, appV  obtained by all algorithms. Figure 5 presents the comparison 
of the obtained best approximate solutions from each algorithm to the actual solution in 
Equation 27. It can be observed that MFO, GA and Euler’s method can approximate both 
solutions almost perfectly. The approximate solutions given by the WCA, PSO, OCBO 
and FPA were only fitted well for one solution ( appI  for WCA, PSO and OCBO while 

appV  for FPA) while having another solution overshoot (such as for WCA, PSO and OCBO 
while appI  for FPA). Since this test problem needs to solve a system of ODEs and thus, 
the algorithm which can optimize two functions simultaneously is desirable. In this regard, 
the MFO outperformed the others, which was further corroborated by the lowest GD of 
3.7683E-04 in Table 4. The WCA gave the worst approximate solution, with the highest 
GD of 5.1703E-03. The unsatisfactory performance of WCA was due to it’s inability to 
approximate the appV  precisely, as observed in Figure 5. Though this test problem has 2 
curves, the GD values of both curves will be added up. 

In terms of MSE, Table 5 reports different finding where the Euler’s method gave the 
highest accuracy while the PSO was ranked last. This is attributed that for the GD, the 
Euclidean distance between point i in the approximate solution with the nearest point in 
the exact solution was considered, as illustrated in Figure 6. As such, the performance 
evaluation is different from the MSE in which the same point i in both the approximate 
and exact solutions is compared. Referring to Figure 5, it can be seen that comparison in 
terms of GD metric was more suited to visual assessment where the approximate solution 
given by the WCA was more significantly deviated from the actual solution. 
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Table 6

Test Problem 2 - The best approximate solution obtained by various algorithms for appI

Fourier 
Coefficient

Algorithm

WCA PSO OCBO MFO FPA GA

a0 0.8381 0.8385 0.8385 9.6502E-01 9.2523E-01 8.3108E-01

a1 1.3621 1.3626 1.3625 1.2481 1.4493 1.2764

b1 −1.0557 -1.0563 −1.0562 -1.2309 -1.2998 -1.0187

a2 −9.8533E-
02

-9.8530E-
02

−9.8535E-
02

-1.8188E-
01

-2.9654E-
01

-6.8844E-
02

b2 −0.4597 -0.4600 −0.4600 -3.1873E-
01

-4.7508E-
01

-3.4941E-
01

a3 −0.1021 -0.1025 −0.1025 -3.6749E-
02

-8.8318E-
02

-4.8406E-
02

b3 1.1915E-02 1.1919E-02 1.1920E-02 2.7173E-02 9.3774E-02 2.9935E-03

Table 7

Test Problem 2 - The best approximate solution obtained by various algorithms for appV

Fourier 
Coefficient

Algorithm

WCA PSO OCBO MFO FPA GA

c0 0.6618 0.6622 0.6620 1.0349 1.2179 5.3369E-01

c1 0.8179 0.8184 0.8185 8.0697E-01 7.6768E-01 8.6274E-01

d1 1.3265 1.326 1.3270 7.1052E-01 4.2777E-01 1.5600

c2 0.4821 0.4818 0.4820 1.2034E-01 -3.5610E-
02

5.8976E-01

d2 8.5909E-02 -8.5912E-
02

8.5915E-02 8.0109E-02 9.6923E-02 3.3360E-02

c3 3.7436E-02 3.7431E-02 3.7430E-02 3.1987E-02 5.1374E-02 6.6653E-03

d3 −0.1137 -0.1136 −0.1135 -8.2506E-
04

5.4181E-02 -1.3986E-
01
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Figure 5. Test Problem 2 – Comparison of the best approximate solutions with the exact solution for WCA, 
PSO, OCBO, MFO, FPA, GA and Euler

Figure 6. The schematic diagram of GD metric in evaluating the Euclidean distance between the approximate 
solution and the exact solution
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Test Problem 3: Bernoulli Equation. The famous Bernoulli equation is considered in this 
test problem, which is formulated as Equation 30 (Sadollah et al., 2015c):

( )2 2 0yy y e−′′ ′+ − =        (30)

with boundary conditions of ( )0 0y =  and ( )1 0y = . The exact solution of this second 
order nonlinear ODE is given by Equation 31:

( )
21 3ln

2 4
y x x

  = − +     
      (31) 

with x  lies between 0 and 1.
The NT of the Fourier series was assigned as 3 and thus, the approximate function that 

needs to be optimized by all algorithms is as in Equation 32. The obtained best approximate 
solutions by all algorithms are shown in Table 8

( ) ( ) ( ) ( )
( ) ( ) ( )
1 1 2

2 3 3

cos sin cos 2

sin 2 cos 3 sin 3
app oY x a a x b x a x

b x a x b x

π π π

π π π

= + + +

+ + +
   (32)

Table 8 
Test Problem 3 - The best approximate solution obtained by various algorithms

Fourier 
Coefficient

Algorithm

WCA PSO OCBO MFO FPA GA

a0 2.25E-02 2.40E-02 2.2512E-02 2.1661E-02 2.1926E-02 2.8790E-02

a1
8.31E-05 -1.48E-05 8.3125E-05 -2.6965E-

04
3.1164E-05 1.9494E-03

b1
-0.3288 -3.32E-01 −0.3290 -3.2742E-

01
-3.2808E-
01

-3.4499E-
01

a2
-2.25E-02 -2.40E-02 −2.2490E-

02
-2.1572E-
02

-2.2097E-
02

-3.1143E-
02

b2
1.67E-04 4.09E-05 −1.6735E-

04
6.5889E-05 8.9764E-05 -2.8985E-

04

a3
-8.31E-05 1.45E-05 −8.3096E-

05
1.5966E-05 5.8905E-05 -1.5094E-

05

b3 3.69E-03 4.08E-03 3.6882E-03 3.3740E-03 3.5244E-03 7.6365E-03
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Figure 7. Test Problem 3 – Comparison of the best approximate solutions with the exact solution for WCA, 
PSO, OCBO, MFO, FPA, GA and Euler

The comparison of the approximate solution to the exact solution (Equation 31) for each 
algorithm is presented in Figure 7. All algorithms were able to approximate the solution 
satisfactorily, where the approximate solutions fitted the exact solution well except for the 
Euler’s method. The approximate solution of the Euler’s method deviated from the exact 
solution as the x   increases. In terms of the GD metric (Table 4), the GD of the OCBO 
was the lowest, followed closely by the FPA, MFO, WCA, PSO and GA with differences 
of 4.0885E-6, 7.9635E-06, 8.5635E-06, 1.4885E-05 and 2.3317E-04. Euler’s method gave 
the highest GD of 4.5792E-03. The same findings were reported in terms of MSE, where 
the Euler’s gave the lowest approximation accuracy while OCBO was ranked first.

Test Problem 4: Nonlinear ODE with Neumann Boundary Condition. A more complex 
ODE is examined in this test problem, in which the Neumann boundary condition is 
considered. Moreover, the difficulty of solving the ODE increases as this test problem has 
a wide range of interval solution, i.e. x  varies from 0 to 15. The ODE is expressed as 
Equation 33 (Sadollah et al., 2015 c)

0.3 1 0y y y′′ ′+ + − =        (33)

with boundary conditions of ( )0 0y =   and ( )' 0 0y =
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The exact solution of this test problem is given by Equation 34:

( ) 3 3
20 20

3 391 391 391sin cos
391 20 20

1x x

x x

y x
e e
   
   
   

      −
      
      = − +   
   
   
   

    (34)

The obtained Fourier series with NT=6 is expressed as Equation 35:

( ) 1 1 2

2 3 3

4 4 5

5 6 6

2cos sin cos
15 15 15

2 3 3sin cos sin
15 15 15
4 4 5cos sin cos
15 15 15

5 6sin cos s
15 15

approx o
x x xY x a a b a

x x xb a b

x x xa b a

x xb a b

π π π

π π π

π π π

π π

     = + + +     
     

     + + +     
     
     + + +     
     
   + + +   
   

6in
15

xπ 
 
 

          (35)

Table 9 shows the best approximate solutions given by the WCA, MFO and FPA. The 
results of PSO and OCBO were not presented due to this problem was not simulated in 
Babaei (2013) and Panda and Pani (2017). The best approximate solutions were compared 
against the exact solution in Figure 8. As observed in Figure 8, all the obtained approximate 
solutions exhibited a slight deviation from the exact solution, but the given approximate 
solutions were able to capture the behaviour of the exact solution. However, the approximate 
solution given by the Euler’s method was unsatisfactory at the regions with local minima 
and local maxima.  The comparison in terms of the GD metric in Table 4 shows that the 
lowest GD was obtained by the GA, and followed by MFO, FPA and WCA, while the 
highest GD was obtained by the Euler. In terms of MSE, it can be seen in Table 5 that 
Euler’s method also produced the lowest approximation accuracy.

Table 9
Test Problem 4 - The best approximate solution obtained by various algorithms

Fourier Coefficient
Algorithm

WCA MFO FPA GA

a0 0.8861 9.5814E-01 9.6552E-01 7.4148E-01

a1 -0.1652 -6.9514E-01 3.3187E-01 -9.9751E-02

b1 0.2533 2.1481E-01 6.1323E-02 5.4197E-01

a2 0.3278 5.1538E-01 5.6435E-02 6.0468E-01
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Figure 8. Test Problem 4 – Comparison of the obtained best approximate solutions with the exact solution for 
WCA, MFO, FPA, GA and Euler

Test Problem 5: Mass-Spring System without Damping Force. A mechanical mass-
spring system without damping force as illustrated in Figure 9(a) is considered in this test 
problem. The spring is stretched with a length of 27cm by a 7.25kg object. At the initial 
position, the spring is displaced 182.88cm upwards from equilibrium, together with an 
initial downward velocity of 30.48 cm/s. No external and damping forces are involved. 
By solving this mass-spring system, the ODE as in Equation 36 (Sadollah et al., 2015c):

Table 9 (Continued)

Fourier Coefficient
Algorithm

WCA MFO FPA GA

b2 0.2068 1 -5.3821E-01 1.0262E-01

a3 0.1606 8.4533E-01 -5.4024E-01 2.5716E-02

b3 -0.4637 -8.0719E-01 -1.5700E-01 -6.9240E-01

a4 -0.6637 -1 -4.0653E-01 -8.1705E-01

b4 -0.1965 -6.1628E-01 2.4779E-01 -1.0015E-01

a5 -0.5218 -6.7200E-01 -3.0362E-01 -4.5059E-01

b5 0.1909 3.8418E-01 5.0291E-02 2.6097E-01

a6 -0.0238 4.0047E-02 -6.2747E-02 -2.1383E-04

b6 0.0926 1.2095E-01 3.6468E-02 7.1086E-02
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1 18 0
2

u u′′ + =         (36)

with initial conditions of ( )0 1/ 2u = −   and ( )' 0 1u =   is obtained. The analytical solution 
of this mechanical problem is given by Equation 37:

( ) ( )0.52705cos 6 2.81984u t t= −      (37)

with solution interval of t  varies from 0 to 3. 

Figure 9  Mass-Spring System (a) without damping force, (b) with damping force

The NT of the Fourier series was chosen as 6. The formulated Fourier series to be 
optimized by the PSO, MFO and FPA algorithms is as in Equation 38: 

 
( ) 1 1 2 2

3 3 4 4

5 5 6 6

2 2cos sin cos sin
3 3 3 3

3 3 4 4cos sin cos sin
3 3 3 3

5 5 6 6cos sin cos sin
3 3 3 3

app o
x x x xY x a a b a b

x x x xa b a b

x x x xa b a b

π π π π

π π π π

π π π π

       = + + + +       
       

       + + + +       
       
       + + + +       
       

 (38)

Table 10 summarizes the best approximate solutions obtained by all algorithms. The 
comparison between the best approximate solutions and the analytical solution in Equation 
36 (Figure 10) shows that all algorithms can capture the changing trend of the exact 
solution. The best fit of the MFO with the actual solution can be observed, with the lowest 
GD value as presented in Table 4. The approximate solutions obtained by the GA, PSO 
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and FPA demonstrated a slight deviation from the exact solution. The worst approximate 
solution was given by Euler’s method, with the highest GD value of 1.3702E-02. The 
approximate solution of Euler’s method deviated gradually from the exact solution on 
each local minimum and maximum. The lowest approximation accuracy in terms of MSE 
was also reported by Euler’s method, as shown in Table 5.

Table 10
Test Problem 5 - The best approximate solution obtained by various algorithms

Fourier 
Coefficient

Algorithm

PSO MFO FPA GA

a0 0.1867 -4.1899E-01 4.9163E-01 -2.2289E-01

a1 0.1356 2.9464E-01 -6.0758E-02 -1.6153E-01

b1 -0.2727 8.9775E-01 -8.3639E-01 4.3788E-01

a2 -3.3241E-02 1 -4.6687E-01 4.1815E-01

b2 -0.2059 -4.5991E-01 1.0118E-01 2.6953E-01

a3 -0.1890 -4.4598E-01 1.0218E-01 2.9498E-01

b3 -0.2059 -1 5.1262E-02 -3.9466E-01

a4 -0.3420 -8.3637E-01 -2.4337E-01 -3.7587E-01

b4 0.1170 3.0496E-01 -9.4811E-02 -2.4499E-01

a5 -3.4034E-02 1.3113E-01 -9.1927E-02 -1.6475E-01

b5 0.4219 6.4957E-01 4.1332E-01 4.1686E-01

a6 -0.2922 -2.3638E-01 -2.7505E-01 -2.9000E-01

b6 -5.3461E-02 -8.1045E-02 -4.9702E-02 8.5314E-03

Test Problem 6: Mass-Spring System with Damping Force. For test problem 5, when 
the velocity is 60.96 cm/s, a damper which imposes a force of 2.26 kg is added to the mass-
spring system (Figure 9 (b)). The second-order ODE derived from this system is given by 
Equation 39 (Sadollah et al., 2015 c)

1 5 18 0
2 2

u u u′′ ′+ + =        (39)

with initial conditions of ( )0 1/ 2u = −  and ( )' 0 1u = . The analytical solution of this 
mass-spring system is given by Equation 40:

( )
5
2 1190.502096 cos 3.2321

2
t

u t e t
 

= −  
 

           (40)

with the interval of t  is between 0 and 3.
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Following the work in (Sadollah et al., 2015c), the NT of 8 was chosen. The Fourier 
coefficients in Equation 41 were then optimized using the PSO, MFO and FPA algorithms. 
Table 11 presents the best approximate solutions obtained by each algorithm.

 
 

( ) 1 1 2 2

3 3 4 4

5 5 6 6

2 2cos sin cos sin
3 3 3 3

3 3 4 4cos sin cos sin
3 3 3 3

5 5 6 6cos sin cos sin
3 3 3 3

app o
x x x xY x a a b a b

x x x xa b a b

x x x xa b a b

a

π π π π

π π π π

π π π π

       = + + + +       
       

       + + + +       
       
       + + + +       
       

+ 7 7 8 8
7 7 8 8cos sin cos sin

3 3 3 3
x x x xb a bπ π π π       + + +       

       

  
           
          (41)

Figure 10. Test Problem 5 – Comparison of the best approximate solutions with the exact solution for PSO, 
MFO, FPA, GA and Euler
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Table 11

Test Problem 6 - The best approximate solution obtained by various algorithms

Fourier 
Coefficient

Algorithm

PSO MFO FPA GA

a0 4.2427E-02 1.6649E-01 2.0069E-02 -2.4357E-01

a1 0.2692 6.3516E-01 -2.9983E-02 -2.2733E-01

b1 -8.1634E-02 -1.8759E-01 -2.0882E-01 3.7190E-01

a2 -3.8633E-02 1.4685E-01 -5.3383E-01 1.4775E-01

b2 -0.4001 -9.2785E-01 -6.1953E-03 2.3527E-01

a3 -0.2950 -7.1377E-01 -2.3839E-02 7.8729E-02

b3 -7.6912E-02 -4.4013E-01 6.8551E-01 -2.1613E-02

a4 -0.1595 -4.6111E-01 6.0477E-01 -8.5710E-04

b4 -3.2617E-02 1.1574E-01 -9.8299E-02 -1.8529E-03

a5 -0.3102 -3.9711E-01 -2.3365E-01 -2.5997E-02

b5 3.6654E-02 1.4303E-01 -5.0980E-01 -9.4478E-02

a6 -0.1159 -1.5763E-01 -3.8550E-01 -1.6933E-01

b6 0.2508 4.1643E-01 1.4217E-01 -3.8009E-02

a7 8.5309E-02 1.9945E-01 1.9615E-02 -7.2358E-02

b7 8.8175E-02 1.5156E-01 1.6755E-01 9.1919E-02

a8 2.2355E-02 4.7600E-02 2.9148E-02 1.7476E-02

b8 -1.3398E-02 -5.1783E-02 6.6004E-03 2.9737E-02

Figure 11 presents the comparison of the best approximate solutions found by all 
algorithms to the exact solution. It can be observed that the approximate solution obtained 
by the PSO fitted the exact solution well for all data points. On the other hand, a noticeable 
deviation from the exact solution after x = 2 can be observed for the approximate solution 
obtained by the MFO, while the approximate solutions of the FPA and GA deviated from 
the exact solution before 0.5=x  and at 1x = . All the algorithms, in general, were able to 
approximate the exact solution satisfactorily, except significant deviation from the exact 
solution at 0.5=x  and 1=x was observed for the Euler’s method. Considering the values 
of GD metric in Table 4 the PSO gave better approximate solution than others, corroborated 
by the lowest GD metric in addition to the visual inspection. Euler’s method, on the other 
hand, gave the worst approximate solution. 
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Figure 11. Test Problem 6 – Comparison of the best approximate solutions with the exact solution for PSO, 
MFO, FPA, GA and Euler

Test Problem 7: Longitudinal Heat Transfer Fins. Longitudinal fins are widely 
utilized in heat exchanger application to increase the rate of heat dissipation to or from 
the environment. Consider a longitudinal fin with constant rectangular profile as shown 
in Figure 12, the fin with length L and semi-base thickness tb is attached to a surface 
with a constant temperature Tb. The convective heat transfer coefficient, h  , fin thermal 
conductivity, k   and fin surface emissivity,  ε  are assumed as Equation 42, 43 and 44:

m

a
b

b a

T Th h
T T
 −

=  −          
(42)

( )1a ak k T Tα= + −          (43)

( )1s sT Tε ε β= + −           (44)

where bh  is convection heat transfer coefficient according to temperature difference 
aT  and bT  , ak  is thermal conductivity at convection sink temperature aT , sε  is fin 

surface emissivity at radiation sink temp sT  and constant α  and β  are variation of thermal 
conductivity and surface emissivity with temperature, respectively. 
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Figure 12. A longitudinal fin with constant rectangular profile

The energy balance of longitudinal fin per unit width based on one-dimensional heat 
conduction is as in Equation 45 (Torabi et al., 2013)

( ) ( ) ( )

( ) ( )4 4

1

1 0

m

a
a a b a

b a

s s s

T Td dTk T T t x h T T
dx dx T T

T T T T

α

σε β

 − + − − −      −   

− + − − =  

    (45)

where ( )t x  is the local semi-fin thicknesses (Equation 46):

( ) ( )/ 1n
bt x t x Lδ  = + −         (46)

where exponent n  = 0, 1 and 2 for rectangular, trapezoidal and concave parabolic fins, 
respectively and δ  is the fin taper. The boundary conditions of adiabatic tip and constant 
base temperature are (Equation 47 & 48):

0

0
x

dT
dx =

=          (47)

( ) bT L T=          (48)

By assuming these dimensionless parameters (Equation 49, 50, 51 & 52):
 

( )

2

2 3

, , , , , ,

, , ,

m
a s b b

a s m
b b b b a b b a

s b b
b b

a b

T T h L TT xX C Nc
T T T L t k t T T

L T tA T B T Nr
k t L

δθ θ θ

σεα β ψ

= = = = = =
−

= = = =

  (49)
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and hence, the fin profile forms the following ODE:

( ) ( ) ( )

( ) ( )

1

4 4

1 1 1

1 0

mn
a a

s s

d dA C X Nc
dx dX

Nr B

θθ θ θ θ

θ θ θ θ

+  + − + − − −     

− + − − =  

          (50)

with boundary conditions of:

( )1 1θ =          (51)

0

0
X

d
dX
θ

=

=        (52)

where parameter A  represents thermal conductivity, B   represents emissivity, m  is 
associated with convective heat transfer coefficient, Nc represents convection-conduction 
parameter, Nr  represents radiation-conduction parameter, aθ  represents temperature of 
convection, sθ represents temperature of radiation sinks and C represents fin taper ratio. 
In a longitudinal fin with constant cross-sectional area, cA , length, L  and perimeter of 
cross-section, P , the following dimensionless parameters in Equation 53 are introduced 
into Equation 45:

2

2 3

, , , , ,

, ,

a s b
a s

b b b a c

s b
b b

a c

T T h L PT xX Nc
T T T L k A

L T PA T B T Nr
k A

θ θ θ

σεα β

= = = = =

= = =
    (53)

The obtained ODE is as in Equation 54:

( ) ( )

( ) ( )4 4

1
1

1 0

m

a
a a

a

s s

d dA Nc
dX dx

Nr B

θ θθθ θ θ θ
θ

θ θ θ θ

 − + − − −      −   

− + − − =  

   (54)

with boundary conditions in Equation 55 and 56:

( )0 1θ =          (55)

1

0
X

d
dX
θ

=

=         (56)

Assuming that the heat conduction occurs only in the longitudinal direction (x-direction) for 
a pure convection fin (i.e. radiation conduction,  Nr  = 0) with constant thermal conductivity 
(A = 0) operating in a constant convective heat transfer coefficient, m is assigned to 0, 
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Nc is assumed to be 1, C is equal to zero for fin with constant cross-sectional area and 
aθ is 0.5, the governing ODE can be expressed as Equation 57 (Sadollah et al, 2015a):

2

2 0.5 0d
dx
θ θ− + =         (57) 

with the length of fin L is assigned to be 1. The analytical solution of this ODE is given 
by Equation 58: 

( ) 0.162 0.162 0.5x xx e eθ −= + +        (58)

with x is within interval 0 to 1.

The NT was chosen as 3 in this test problem. Table 12  summarizes the obtained best 
approximate solutions for each algorithm, where it can be observed that the obtained 
coefficients for the Fourier series are similar for all algorithms, except for GA. As shown 
in Table 4, Euler’s method has surpassed GA, MFO, PSO and FPA with the lowest GD 
value, albeit in Figure 13 the obtained approximated solutions by all algorithms are close 
to the actual solution. The performance of all algorithms were considered satisfactorily 
with the GDs within the resolution of 1E-04. As shown in Table 5, the same performance 
can be observed in which the Euler’s method gave the highest accuracy while the FPA 
was ranked last. 

Table 12 
Test Problem 7 - The best approximate solution obtained by various algorithms

Fourier 
Coefficient

Algorithm

PSO MFO FPA GA

a0 0.917338 9.1900E-01 9.1917E-01 9.0374E-01

a1 -0.093953 -8.6519E-02 -8.3184E-02 -8.5112E-02

b1 -0.054890 -5.9048E-02 -5.7407E-02 -3.8041E-02

a2 -0.005338 -7.5052E-03 -6.6807E-03 3.9307E-03

b2 0.026293 2.5749E-02 2.4814E-02 2.2851E-02

a2 0.005953 5.1650E-03 4.9853E-03 3.6390E-03

b3 7.67E-04 7.7181E-04 5.9018E-04 -3.0567E-03
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Figure 13. Test Problem 7 – Comparison of the best approximate solutions with the exact solution for PSO, 
MFO, FPA, GA and Euler

Comparison of Optimization Performance and Discussion

From the obtained results in Table 4, each algorithm was ranked based on its optimization 
performance in terms of the GD metric for all considered test problems. The results are 
summarized in Table 13. The OCBO was ranked first among others, followed by the MFO, 
FPA and GA with close competition. 

Also, since this study attempts to develop an approximate solution of ODE with the 
formulation of Fourier series expansion based on the MFO and FPA as the optimizers, the 
results of the average, worst and standard deviation (SD) of GD assessment metric for these 
optimizers are presented in Table 14. Interestingly, though MFO and GA outperformed the 
FPA in most of the test problems if considering only the best GD values (Table 4), their 
average GD values in all test problems were found to be higher than the FPA in Table 14. 
This implies that the FPA produces more consistent approximate solutions than the MFO 
and GA optimizers, indicated by the lower SD values in all test problems. 
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Table 13
The ranking of all considered algorithms based on the obtained results in Table 4

Test 
Problem

Algorithm
PSO WCA OCBO MFO FPA GA Euler

1 5 2 3 6 4 7 1
2 6 7 2 1 4 5 3
3 5 4 1 3 2 6 7
4 - 4 - 2 3 1 5
5 4 - - 1 3 2 5
6 1 - - 3 4 2 5
7 4 - - 3 5 2 1
Average 
Rank

4.17 4.25 2 2.71 3.57 3.57 3.86

Total Rank 6th 7th 1st 2nd 3rd /4th 3rd /4th 5th

Table 14
Results of the average, worst and standard deviation (SD) of GDs for MFO, FPA and GA algorithms for all 
test problems

Test Problem GD value
Algorithm

MFO FPA GA
1 Best 3.6552E-04 2.5799E-04 4.7591E-04

Average 3.8010E-03 5.6645E-04 2.3227E-03
Worst 2.7739E-2 8.8413E-04 6.9962E-03
SD 5.6027E-03 1.5857E-04 1.4704E-03

2 Best 3.7638E-04 1.0593E-03 8.3174E-04
Average 1.5327E-02 4.2612E-03 2.3910E-03
Worst 6.1616E-02 7.6770E-03 4.3628E-03
SD 1.5193E-02 1.7392E-03 9.4657E-04

3 Best 1.4702E-05 1.0827E-05 2.3991E-04
Average 1.5521E-03 1.5522E-04 5.6107E-04
Worst 4.5131E-02 3.2881E-04 1.3685E-03
SD 8.0924E-03 7.9581E-05 2.8355E-04

4 Best 5.1476E-04 8.1790E-04 2.7037E-04
Average 6.3881E-03 1.8513E-03 2.4832E-03
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Table 15 presents the average iterations used by MFO, FPA and GA to converge for 
all problems. The simulation of each algorithm was repeated for 30 runs. For each run, the 
required number of iteration to reach the stopping condition was recorded, and subsequently 
summed up and averaged. Hence, the average iterations shown in Table 15 are in decimal 
number instead of natural number. For test problem 1 and 2, in comparison with FPA, 
more iterations are needed by the MFO algorithm and GA in order to converge. For other 
test problems, MFO outperformed both FPA and GA in terms of convergence speed. The 
significant difference can be observed in test problem 6 in which the MFO can converge 
to the optimal solutions with 400 iterations lesser, as compared to FPA and GA. 

Table 15
Average iterations used to reach convergence by MFO, FPA and GA algorithms for all test problems

Table 14 (Continued)

Test Problem GD value
Algorithm

MFO FPA GA
4 Worst 3.1902E-02 3.0593E-03 5.1182E-03

SD 7.1452E-03 5.3710E-04 1.1382E-03
5 Best 5.4773E-04 1.1004E-03 5.7002E-04

Average 1.3354E-02 2.0702E-03 2.4800E-03
Worst 6.8411E-02 5.3404E-03 4.4761E-03
SD 1.6160E-02 9.1795E-04 9.1920E-04

6 Best 4.7393E-04 4.7710E-04 3.0154E-04
Average 2.5800E-03 7.2895E-04 9.9495E-04
Worst 1.4132E-02 1.0160E-03 2.7513E-03
SD 3.0067E-03 1.3648E-04 5.1470E-04

7 Best 2.8087E-04 4.2669E-04 2.6636E-04
Average 1.5787E-02 4.4573E-04 6.2556E-03
Worst 8.8986E-02 4.6948E-04 2.0060E-02
SD 2.7739E-02 1.1897E-05 5.5743E-03

Test Problem Iteration
Algorithm

MFO FPA GA
1 Average Iteration 999.4 677.9 699.4

Maximum 
Iteration 1000 700 700
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Relationship of Number of Terms to the Approximation Accuracy 

In the previous section, the performances of the optimization algorithms were evaluated in 
terms of the GD metric and MSE. The NT used in the test problems was chosen according 
to the studies in Babaei (2013), Sadollah et al. (2015a), and Sadollah et al. (2015c). In this 
section, the relationship between using different NTs to the accuracy of the approximate 
solutions was explored. The NTs were varied from 1 to 9, and the obtained Fourier series 
was then optimized using the MFO, FPA and GA. The number of population and the 
maximum number of iteration of these algorithms were fixed as in Table 1. All simulations 
were repeated for 30 trials. For each run, the simulation continues until the maximum 
iteration was satisfied. 

By varying the NTs from 1 to 9, the comparisons of the approximate solutions obtained 
by the FPA to the actual solutions for test problems 4, 5 and 6 are depicted in Figure 14 to 
16. Others are omitted for brevity. A common trend can be observed that for the first few 
NTs, the algorithms were unable to predict the approximate solutions due to insufficient 
NTs. When sufficient NT was employed, the algorithms were able to approximate the 
exact solutions satisfactorily. However, the further increase in NT led to a decline in the 
approximate accuracy, due to more unknown coefficients were involved. Thus, more 
iterations and bigger population size were needed such that the MFO, FPA or GA can 
converge to the optimal solution. However, in this study, the population size and the 

Table 15 (Continued)

Test Problem Iteration
Algorithm

MFO FPA GA
2 Average Iteration 499.6 488.8 499.5

Maximum Iteration 500 500 500
3 Average Iteration 499.5 791.8 798.7

Maximum Iteration 500 800 800
4 Average Iteration 299.6 489.9 499.1

Maximum Iteration 300 500 500
5 Average Iteration 399.7 481.6 499.3

Maximum Iteration 400 500 500
6 Average Iteration 599.6 971.6 999.5

Maximum Iteration 600 1000 1000
7 Average Iteration 936.4 987.2 999.6

Maximum Iteration 1000 1000 1000
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maximum number of iteration were fixed. Therefore, these algorithms could not reach the 
optimal solution within the allowable iterations for NT = 7 and onwards for test problem 4.

Figure 14. Test Problem 4 – Comparison of the obtained best approximate solutions with the exact solution 
for FPA by varying the NTs from 1 to 9

Figure 15. Test Problem 5 – Comparison of the obtained best approximate solutions with the exact solution 
for FPA by varying the NTs from 1 to 9
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Figure 16. Test Problem 6 – Comparison of the obtained best approximate solutions with the exact solution 
for FPA by varying the NTs from 1 to 9

Table 16 summarizes the GD values of the best approximate solutions obtained by the 
MFO, FPA and GA optimizers for all test problems when different NTs were considered 
and depicted further in Figure 17. It can be observed that similar decreasing and increasing 
behaviours were shown by the optimizers. Initially, the GD value decreases with increasing 
NTs until it reaches the minimum. After this point, a further increase in NT was no longer 
proportional to the obtained approximation accuracies. It can be inferred that neither low 
nor high NTs guarantee high approximation accuracy. The NT = 3, NT = 5 or 6 and NT = 4 
or 7 were recommended for MFO, FPA and GA, respectively, based on the obtained results.

Table 16
The best GD values obtained by MFO, FPA and GA optimizers for all test problems using different NTs

Algorithm NT Test Problem
1 2 3 4

MFO 1 5.0502E-03 7.7745E-03 3.9283E-04 2.6548E-02
2 1.2662E-03 5.7775E-04 1.8552E-04 2.2889E-02
3 2.9339E-04 3.7683E-04 1.4702E-05 2.2890E-02
4 3.3058E-04 5.4313E-04 1.7945E-04 9.9603E-03
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Table 16 (Continued)

Algorithm
NT

Test Problem
1 2 3 4

5 2.4864E-04 7.0202E-04 4.5420E-04 3.4455E-04
6 3.6552E-04 4.6924E-03 1.3182E-03 5.1476E-04
7 3.2673E-04 5.3539E-03 4.8136E-03 8.1944E-05
8 4.8252E-04 7.9415E-03 1.3306E-03 2.0955E-04
9 5.9491E-04 6.4883E-03 2.9632E-03 1.3481E-03

FPA 1 5.0648E-03 7.5922E-03 3.9793E-04 2.6556E-02
2 1.4192E-03 4.6520E-04 1.8879E-04 2.2934E-02
3 2.3567E-04 1.0593E-03 1.0827E-05 2.2727E-02
4 2.0434E-04 2.8545E-03 1.8994E-04 9.4469E-03
5 1.8545E-04 6.5862E-03 2.4402E-04 6.4572E-04
6 2.5799E-04 4.9055E-03 8.1734E-04 8.1790E-04
7 4.0502E-04 1.1536E-02 6.3980E-04 1.4909E-03
8 3.8971E-04 1.3597E-02 6.0018E-04 2.3740E-03
9 7.4868E-04 1.9429E-02 2.5486E-03 2.9649E-03

GA 1 4.1139E-03 7.2000E-03 3.7000E-04 2.6540E-02
2 1.1776E-03 6.3031E-04 1.2644E-04 2.2604E-02
3 4.2029E-04 8.3174E-04 2.3991E-04 2.2937E-02
4 2.9718E-04 5.3528E-04 1.1964E-04 1.2308E-02
5 8.6889E-04 5.5544E-04 1.7728E-04 4.2365E-03
6 4.7591E-04 3.0247E-04 1.9681E-04 2.7037E-04
7 5.0370E-04 1.8568E-03 3.3357E-04 1.2700E-04
8 3.5526E-04 1.0719E-03 4.0010E-04 1.2113E-04
9 1.0009E-03 2.2051E-03 2.0830E-04 1.9080E-04

Algorithm
NT

Test Problem
5 6 7

MFO 1 1.0556E-02 8.2317E-03 3.1265E-03
2 9.7771E-03 3.7754E-03 2.3641E-03
3 9.7323E-03 2.8035E-03 2.8087E-04
4 8.7953E-03 1.7855E-03 3.1540E-04
5 3.2337E-03 7.8302E-04 2.4732E-03
6 5.4773E-04 2.3517E-04 2.8963E-03
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Algorithm
NT

Test Problem
5 6 7

7 1.1805E-03 6.9160E-04 3.2579E-03
8 3.3571E-04 4.7393E-04 1.0370E-02
9 7.5183E-04 2.6149E-04 1.7981E-02

FPA 1 1.0556E-02 8.2330E-03 3.1273E-03
2 9.8460E-03 3.8064E-03 2.3766E-03
3 9.8036E-03 2.8115E-03 4.2669E-04
4 9.3868E-03 1.8730E-03 3.2487E-05
5 4.2955E-03 6.8033E-04 1.6666E-04
6 1.1004E-03 2.0994E-04 5.1030E-04
7 1.4087E-03 2.5601E-04 5.6284E-04
8 1.6190E-03 4.7710E-04 1.4553E-03
9 1.9285E-03 6.5623E-04 4.3279E-03

GA 1 1.0556E-02 8.2328E-03 3.0958E-03
2 9.8259E-03 3.8128E-03 2.0768E-03
3 9.7890E-03 2.8533E-03 2.6636E-04
4 9.2191E-03 2.0325E-03 4.9353E-04
5 5.4457E-03 9.8756E-04 1.9471E-03
6 5.7002E-04 4.5320E-04 2.2832E-03
7 5.5462E-04 2.8517E-04 5.1471E-03
8 7.3151E-04 3.0154E-04 3.5705E-03
9 7.4270E-04 2.7269E-04 2.5460E-03

Table 16 (Continued)

The bolded values are the lowest GD value for each test problem
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Figure 17. Relationship of using different NTs with respect to approximation accuracies for all test 
problems (a) MFO; (b) FPA; (c) GA
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CONCLUSIONS

In this work, finding the approximate solutions of ODEs with the formulation of Fourier 
series expansion, calculus of variation and metaheuristic algorithm, specifically, the MFO 
and FPA, was addressed. The approximate approach was examined through seven test 
problems, including first and second-order ODEs, system of ODE, ODE with Neumann 
boundary condition, mechanical engineering problems and longitudinal fins heat transfer 
problem. It was found that all approximate solutions were able to approximate the exact 
solutions satisfactorily, with the GD metric within the range 1E-03 to 1E-05. Besides having 
reasonable accuracy, the approximate approach is promising in the sense that (i) it can be 
applied in a wide range of ODEs regardless of the types and orders, (ii) the procedures 
used to solve different ODEs can be computed using a general framework, (iii) the Fourier 
series can be differentiated infinitely and thus, it can be used as the approximate solution 
for higher-order ODEs, and (iv) the NT is adjustable to suit the personal requirement. 

In terms of the dependency of approximation accuracy to the NT, it was found that the 
increment in NT was not proportional to the approximation accuracy. Though an increase 
of the NT may improve the approximation accuracy, in turn, it causes higher computational 
complexity due to the increasing number of Fourier coefficients. Thus, a moderate value 
of NT is suggested.

Figure 17. (Continued)
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For future recommendations of this study, the lower and upper bounds of -1 and 1 
can be increased to obtain a better approximate solution. Nonetheless, this will increase 
the computational time needed due to more possible coefficients to consider. Other than 
that, more newly invented optimization algorithms can be simulated and compared to see 
the feasibility of this method. Lastly, ODEs with different difficulties and fields should be 
tested to challenge the limits of this method.
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